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We propose a microscopic mechanism for the incommensurate phase in TiOX compounds. The model
includes the antiferromagnetic chains of Ti ions immersed in the phonon bath of the bilayer structure. Making
use of the Cross-Fisher theory, we show that the geometrically frustrated character of the lattice is responsible
for the structural instability which leads the chains to an incommensurate phase without an applied magnetic
field. In the case of TiOCl, we show that our model is consistent with the measured phonon frequencies at
T=300 K and the value of the incommensuration vector at the transition temperature. Moreover, we find that
the dynamical structure factor shows a progressive softening of an incommensurate phonon near the zone
boundary as the temperature decreases. This softening is accompanied by a broadening of the peak which gets
asymmetrical as well when going toward the transition temperature. These features are in agreement with the
experimental inelastic x-ray measurements.
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I. INTRODUCTION

In 1955, while writing an introductory solid-state text-
book, Peierls1 discovered that no one-dimensional �1D�
metal could exist due to the electron-phonon coupling. In-
deed, a half-filled metal is unstable toward a lattice dimer-
ization. The system undergoes a metal-insulator transition
because the loss of elastic energy is made up for by the
electronic energy acquired when the gap is opened. A quite
similar process takes place in a one-dimensional antiferro-
magnet, giving rise to the so-called spin-Peierls �SP�
transition.2 The lattice dimerizes and the antiferromagnetic
quasi-long-range order is replaced by a gapped singlet state.
From this point of view, no one-dimensional antiferromag-
netic system should be stable.

In spite of this general prediction, only few spin-Peierls
materials were found. Most of them were observed in the
early 1970s in some organic charge-transfer systems. How-
ever, direct spectral characterization was lacking due to the
unavailability of large crystals for inelastic-neutron-
scattering measurements. In this context the discovery of
CuGeO3 in 1993, the first inorganic spin-Peierls system, re-
newed the interest in this subject. Large enough crystalline
samples of CuGeO3 could be obtained to undertake a de-
tailed spectral characterization. An important conclusion of
these studies was that in CuGeO3, the nonadiabatic character
of the phonons3 is so important that the SP transition is not
driven by a softening of a precursive phonon mode. It has
been shown that an extension of the canonical theory of
Cross and Fisher4 could explain this feature.5 Moreover, the
dispersion relation of the phonons in the direction perpen-
dicular to the magnetic chains should be taken into account
in a nonadiabatic SP system such as CuGeO3.6

The recent discovery of a spin-Peierls transition in the
TiOX �X=Cl,Br� family has opened new questions about
this spin-Peierls paradigm. The essential building blocks of
these compounds are bilayer structures of magnetically ac-
tive Ti ions connected by O ones. The position of a Ti ion in
a layer is shifted with respect to the other in the neighboring
layer, forming something like an anisotropic triangular struc-
ture. In fact TiOCl was initially thought to be a candidate for

a resonating valence-bond state,7 but it has been found to be
mainly a one-dimensional magnetic system8 with the Ti dxy
orbitals pointing toward each other in the crystallographic b
direction.9 The high-temperature magnetic susceptibility is
well described by the Bonner-Fisher curve, indicating a
nearest-neighbor magnetic exchange J�660 K.9

The phase diagram of TiOCl does not correspond to a
canonical SP system in the sense that an incommensurate
intermediate phase appears between the high-temperature
uniform phase and the low-T dimerized phase.9,10 The tran-
sition temperatures are found to be Tc1�66 K and Tc2
�92 K. In Ref. 10 a very large energy gap of about 430 K
in the low-temperature phase and a pseudo-spin-gap below
135 K were also reported. The order of both transitions is
still under debate.11–13

The origin of the intermediate phase is controversial and
not yet well understood. As the position of a Ti ion in a chain
is shifted with respect to another one in the neighboring
chain, it is plausible to speculate that some type of competi-
tion between the in-chain and out-of-chain interactions could
be the origin of the incommensurate phase. This was the idea
of Rückamp et al.,11 who proposed a Landau theory for the
incommensurate transition. This phenomenological theory
includes the tendency to dimerize of each chain and the cou-
pling of the order parameter with the neighboring chain. As a
result the incommensurate phase is accounted. However the
sign and the value of the parameters are phenomenologically
chosen and the connection with the underlying microscopic
theory is not clear.

In view of the previous discussion, in this paper we pro-
pose a simplified microscopic model which accounts for the
transition from the uniform to the incommensurate phase in
TiOCl. Our model contains the relevant magnetic interaction,
the phonons and the spin-phonon coupling. The paper is or-
ganized as follows. In Sec. II we present the model and show
that the essential ingredient leading to the incommensurate
transition is that the phononic dispersion of the modes near �
is linear. In Sec. III we apply the model to TiOCl. We start by
fitting the parameters in order to account for the measured
phononic frequencies and the value of the incommensurate
wave vector at the transition temperature. After that, we ob-
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tain the dynamical structure factor of the phonons and com-
pare it with the one obtained in x-ray experiments. The soft-
ening of a phonon and the loss of spectral weight when the
transition approaches is correctly accounted.

II. MODEL AND INCOMMENSURATE TRANSITION

We include the Ti atoms on the bilayer structure which
interact by harmonic forces as depicted in Fig. 1. For sim-
plicity we consider ionic displacements only in the direction
of the magnetic chains. As the measured magnetic suscepti-
bility of TiOCl is well reproduced by a 1D Heisenberg
model, we assume that the Ti atoms are magnetically
coupled only along the b direction. Moreover, as a direct
exchange seems to be the dominant Ti-Ti interaction, we
assume that J��u� is modulated by the movement of nearest-
neighbor Ti ions in the chain direction. Our spin-phonon
Hamiltonian reads

H = Hph + Hs + Hsph,

Hph = �
i,j

Pi,j
2

2m
+ �

i,j
�Kin

2
�ui,j − ui+1,j�2

+
Kinter

2
��ui,j − ui,j+1�2 + �ui,j − ui+1,j−1�2�� ,

Hs = J�
i,j

Si,j · Si+1,j ,

Hsph = �
i,j

��ui+1,j − ui,j�Si,j · Si+1,j , �1�

where Pi,j is the momentum of the atom i of the chain j, ui,j
are the displacements from the equilibrium positions along
the direction b of the magnetic chains, Si,j are spin-1

2 opera-
tors with exchange constant J=J��u=0� along the b axis of
a nondeformed underlying lattice, �= �dJ��u� /d�u� 	�u=0,
and Kin and Kinter are the in-chain and interchain harmonic
force constants as shown in the Fig. 1.

Representing the atom displacements and momenta
through phonon normal coordinates, we can write the pho-
non dependent parts of the Hamiltonian as

Hph = �
q

���q��aq
†aq + 1

2� ,

Hsph =
1


N
�
q

g�1 − eibqy�Q�q��
i,j

eiq·Ri,jSi,j · Si+1,j ,

where ��q� is the phonon-dispersion relation which reads

�2�q� =
4

M
�Kin sin2qy

2
+ Kinter�1 − cos

qx

2
cos

qy

2
� , �2�

for our model and g= �

M

. The quantized phonon normal co-
ordinates are defined by

Q�q� =
 �

2��q�
�a−q

† + aq� .

It will be also useful to introduce a dimensionless spin-
phonon coupling constant defined as in Ref. 4:

� =
4g2

�J�2�qy = ��
.

To compare with x-ray scattering data, the dynamical struc-
ture factor S�q ,�� has to be determined. It is related to the
phononic retarded Green’s function14 by

S�q,�� = −
��q�

�

Im Dret�q,��
1 − e�� ,

where

Dret�q,�� =
D0�q,� + i	�

1 − D0�q,� + i	�
�q,� + i	�
. �3�

D0 denotes the noninteracting phonon Green’s function de-
fined by

D0�q,i�n� =
2

�i�n�2 − �2�q�
,

and 
�q ,��=
�qy ,�� is the phonon self-energy. In the fol-
lowing, we treat the spin-phonon interaction using a random-
phase approximation �RPA� for the phonon self-energy term
along with the expression obtained by Cross and Fisher4 us-

J(∆u)

b

a

Kinter

in

ui,j

K

FIG. 1. Schematic representation of our simplified model. Only
Ti atoms are included over the ab plane. Kin and Kinter are the
harmonic force constants acting when two neighbor atoms in the
same chain and in neighboring chains, respectively, move from
their equilibrium position.
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ing bosonization for the dimer-dimer correlation function in
the Heisenberg model:


�qy,�� = −
0.37

T
	�1 − eiqyb�g	2I1

��� +
�

2
Jb�qy − ��

2�T
�I1�� −

�

2
Jb�qy − ��

2�T
� ,

with

I1�k� =
1


8�

�� 1
4 + 1

2 ik�
�� 3

4 + 1
2 ik� .

Let us start by identifying the structural transition of the
model by searching the poles of the retarded Green’s func-
tion when �=0 over the �qx ,qy� plane of the first Brillouin
zone. They are given by the equation of the zeros in the
denominator of Eq. �3�, which reads

�2�q� + 2
�qy,0� = 0. �4�

From this equation we obtain T�q�, the temperature where
the renormalized frequency vanishes for each q. The highest
of these temperatures signals the q wave vector of the struc-
ture that will be developed at that T. For an isolated chain
this transition takes place at q= �0,��, which is the usual
spin-Peierls transition toward the dimerized phase.

How does this situation change when the system acquires
a transversal dispersion due to an elastic coupling between
the chains? Certainly, if the chains arrange in a rectangular
geometry �atoms in different chains align in phase�, the dis-
persion of the phonons in the chain direction has a local
maximum at qy =� and the T�q� given by Eq. �4� has a
maximum at q= �0,��. Thus, no complete softening of an
incommensurate mode is found.

A crucial consideration here is that the dispersion given
by Eq. �2�, when expanded near qy =�, reads

�2�q� �
4

M
�Kin + Kinter�1 −

	

2
cos

qx

2
� ,

	 � � − qy ,

i.e., it increases linearly near �. Plugging this expression into
Eq. �4� and expanding up to order 	, we obtain

T�	� =
g2M	a0	

Kinter + Kin
�1 +

1

2

Kinter cos�qx

2
	

Kinter + Kin
� , �5�

where it was enough to calculate 
�qy ,0� at qy =� as


�� ,0�=
2a0g2

T , with a0=−0.257 743, because the first correc-
tion is of second order in 	.

The temperature given in Eq. �5� decreases with qx and
increases for increasing 	. Therefore an instability is pre-
dicted at qx=0 and qy shifted from �. The next orders of T�	�
stabilize a local maximum at a given 	. Thus, due to the
linear dispersion of the relevant phonon mode, model �1� has
a transition from a uniform to an incommensurate phase by
lowering the temperature. The physical reason why this tran-

sition appears in the triangular arrangement and not in the
rectangular one is that the elastic energy that the system
gains by distorting the lattice in a modulated pattern de-
creases faster in the first case, when the wave vector of the
modulation moves away from �. This reduction overcomes
the cost in the magnetic free energy the system should pay to
separate from the dimerized state. This reduction does not
take place in the rectangular case and the system never goes
to an incommensurate phase but directly to a dimerized one.

III. APPLICATION TO TiOCl

Having shown that the uniform-incommensurate transi-
tion is present in our model, we will try to fit the parameters
to account for the available experimental data of TiOCl. We
intend to reproduce the experimental incommensurate wave
vector qy �3.04 �Refs. 15 and 16� and the renormalized fre-
quency of the phonons near the zone boundary at 300 K
obtained in Ref. 15 by inelastic x-ray scattering. In order to
do that we have to fix the free parameters of our model, i.e.,
the elastic constants and the spin-phonon coupling. Usually
the critical temperature is used to fix the spin-phonon cou-
pling. This value could be obtained by numerical solution of
Eq. �4� once the other parameters are known. The values of
Kin and Kinter are fixed in such a way to fit the phononic
frequencies measured by inelastic x-ray scattering at T
=300 K with the ones obtained from the positions of the
peaks of S�q ,��.

The value of the in-chain elastic constant was set to �in
=
4Kin /M =6.6 meV and the interchain one was fixed to
Kinter /Kin=3.38. This enables us to fit the experimental fre-
quencies near qy =� at 300 K with a spin-phonon coupling
constant �=0.17. The transition temperature is 92 K as in
TiOCl. However, using these parameters we obtain an in-
commensurate wave vector qinc=3.125; i.e., it is close to �
and far away from the experimental value. Our results to-
gether with the experimental ones are shown in Fig. 2. In this
figure we see that as we move away from the zone boundary,
the dispersion curve quickly decreases and separates from

π3π/4π/2
q

y

0

5

10

15

ω
(m

eV
)

Bare dispersion

T = 300 K

T = 92 K

q
inc

= 3.125

FIG. 2. �Color online� Evolution with the temperature of the
dressed frequency of the phonons along the �0,qy� path. The model
parameters are 
4Kin /M =6.6 meV, Kinter�3.38Kin, and �=0.17.
The black dots are the experimental points obtained by inelastic
x-ray scattering at T=300 K �Ref. 15�.

MICROSCOPIC THEORY FOR THE INCOMMENSURATE… PHYSICAL REVIEW B 79, 134430 �2009�

134430-3



the experimental points. Moreover, the bare dispersion curve
is very close to the 300 K one.

We have obtained a quite small value of the incommen-
suration with those parameters. Therefore, in order to repro-
duce the experimental one, we increase the spin-phonon cou-
pling �. The new value turns out to be �=0.41. This change
has the undesired effect of increasing the transition tempera-
ture up to Tinc�225 K, more than twice the experimental
transition temperature. Moreover, if we want to keep adjust-
ing the experimental x-ray phonons at 300 K, we have to
increase the value of the bare phonon frequency because of
the larger spin-phonon coupling. The chosen values are

4Kin /M =10.5 meV and Kinter�3.38Kin; i.e., we have kept
the ratio Kinter /Kin unchanged. The results are shown in Fig.
3.

Now we see that the calculated 300 K curve does not fall
rapidly as before and that the experimental point which is the
most separated from the zone boundary is also well adjusted.
Nevertheless, we have noted that with this set of parameters
the transition temperature is overestimated. This problem is
also present in the calculations of Abel et al.15 through an
underestimation of the magnetic coupling J. We think that
this disagreement is due to the adiabatic treatment of the
phonons and will be solved by an extension of the results of
Ref. 6 for the geometry of TiOCl. In this paper it was shown
that a theory going beyond the mean-field RPA treatment of
the phonons by including nonadiabatic effects predicts a re-
duction in the critical temperature for a given �. We plan to
undertake this generalization in a forthcoming paper, but let
us make a rough estimation of the renormalization of the

transition temperature using formula �35� of Ref. 6. Note that
the parameter �inter in Ref. 6 is not exactly the same as in the
present paper. It is in this sense that the following results
should be taken as an estimation. Proceeding in this way we
obtain

T = Tad�1 −
1


1 + ��inter/�in�2 = 117 K,

where Tad=225 K is the transition temperature obtained by
the adiabatic approach. The transition temperature given by

(b)(a) (c) (d)

(e)

FIG. 4. �Color online� Contour curves of the dynamical structure factor as a function of qy �qx=0� and � for different temperatures: �a�
1000, �b� 300, �c� 255, and �d� 225 K �transition temperature�. In �e� we show a zoom of �d� around the transition point. Brighter zones
correspond to higher intensities. We see that there is a softening of a group of modes near the zone boundary. In this region, there is a
broadening of the peak width with decreasing temperature due to a redistribution of the spectral weight.
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FIG. 3. �Color online� Evolution with the temperature of the
dressed frequency of the phonons along the �0,qy� path. The curves
were obtained from the positions of the peaks of the dynamical
structure factor. The fitted parameters are 
4Kin /M =10.5 meV,
Kinter�3.38Kin, and �=0.41.
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the nonadiabatic approach is now very close to the experi-
mental one. Furthermore, let us estimate the energy gap by
combining Eqs. �26� and �32� of Ref. 6,

� = 3.04�J�1 −
1


1 + ��inter/�in�2 = 427.76 K,

i.e., we obtain excellent agreement with the experimental gap
of 430 K.10 From these estimations it can be inferred that the
nonadiabatic treatment should solve the problem.

For the present purpose, let us use the second set of pa-
rameters. In Fig. 4 we show a plot of the dynamical structure
factor along the �0,qy� path of the first Brillouin zone for a
range of frequencies and different temperatures.

When the temperature is high �Fig. 4�a��, we obtain peaks
which reproduce the bare dispersion relation of the model.
With decreasing temperatures �Figs. 4�b�–4�d��, we observe
the trace of the phonon softening along with a broadening
and a height reduction of the peak. This is due to a redistri-
bution of the spectral weight which is concentrated again in
a defined peak at the transition temperature for �=0 and
qy =3.047 �Fig. 4�d� and zoom in Fig. 4�e��. This broadening
of the peak indicates that phonons are overdamped by the
interaction with the magnetic excitations. This behavior was
indeed observed experimentally in Ref. 15 �see Fig. 9�b� of
this reference� and considered there as a disagreement with
the Cross-Fisher theory. Instead, our results show that due to
the interaction of the bare phonons with the two-spinon con-
tinuum of the magnetic subsystem, the dynamical structure
factor of the phonons does not show a Lorentzian character.
It is indeed asymmetrical toward low frequencies �Fig. 5�.
This behavior should be checked in future experiments.

It was recently proposed, from an ab initio density-
functional theory �DFT�, that a weak ferromagnetic inter-
chain coupling could be the origin of the incommensuration
in this compound.17 As no quantitative estimation of the in-
commensurate wave vector has been done, we cannot com-
pare the relative importance of each mechanism. Moreover,
the actual values and the signs of the interchain exchanges
remain as a controversial question and the results of the
present work show that the elastic frustration in the inter-

chain coupling is enough to produce the incommensurate
phase.

IV. SUMMARY

In this paper we have developed a model which explains
the uniform-incommensurate transition in TiOCl. It is based
on the competition between the tendency of isolated antifer-
romagnetic chains to dimerize and the frustrated elastic in-
terchain coupling. The model predicts the softening of an
incommensurate mode. Moreover, it is in agreement with the
loss of a coherent spectral weight for the phonons near the
zone boundary as observed by inelastic x-ray scattering.
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